Langara Course Information

Note: this website is a student project and is not affiliated with Langara College.

Suggestions? Feedback? Found a bug? Please send a report through this form.

DANA 4820: Predictive Analytics - Qualitative Data

Course FormatLecture 3.0 h + Seminar 0.0 h + Lab 1.0 h
Credits3.0

Predictive Analytics is a process of using and applying statistical analysis techniques for estimation and forecasting. Students learn standard methodology for analyzing categorical data including chi-square tests for two-way and multi-way contingency tables, logistic regression, and Poisson regression.

Registration in this course is restricted to students admitted to the Post-Degree Diploma in Data Analytics and Post-Degree Certificate in Data Analytics.

Prerequisite(s): A passing mark from Data Analytics Math Assessment Test or an "S" grade in MATH 4801; and a minimum "C" grade in DANA 4800.


Course Attributes:
2nd Year Arts
2nd Year Science
Humanities
Lab Science
Science
Social Science
University
Transferable
Other Attributes:
Offered online:No
Preparatory course:No
Repeat limit2
Additional fees:$34.3
First offered:Fall 2019
Last offered:Fall 2025
Registration
restrictions:
RP
Outline(s):

DANA 4820 - Summer 2019 (v. 2)

Transfer Agreements
CourseDestinationCreditStart to End
No active transfer agreements.
Inactive Transfer Agreements (click to open)
CourseDestinationCreditStart to End
No inactive transfer agreements.

Offerings of this course:

SemesterCRNSectionSeatsWaitlistDaysTimeRoomTypeInstructor
Fall 20253080600131N/AM-W----1430-1620 Lecture. TBA
Summer 20252028900115 -T-R---1230-1420B153LectureNooshin Lary
Spring 20251013000113 M-W----1430-1620A320LectureJonathan Agyeman
--W----1830-2125A314ExamJonathan Agyeman
Fall 2024304670018 M-W----1430-1620B252LectureNooshin Lary
M------1830-2125B252ExamNooshin Lary
Summer 2024207070014 -T-----1230-1420B010LectureNooshin Lary
--W----1430-1620B008LectureNooshin Lary
---R---1830-2125B008ExamNooshin Lary
Spring 2024109940014 M-W----1430-1620A314LectureJonathan Agyeman
-T-----1830-2125B031ExamJonathan Agyeman
Fall 2023303570018 -T-R---1630-1820A347LectureNooshin Lary
---R---1830-2125A347ExamNooshin Lary
Summer 2023205790019 M-W----1630-1820B008LectureNooshin Lary
---R---1830-2125B008ExamNooshin Lary
Spring 20231084500115 M-W----1630-1820B029LectureAzadeh Alimadad
M------1830-2125B029ExamAzadeh Alimadad
Fall 2022306690018 M-W----1630-1820A276LectureAzadeh Alimadad
M------1830-2125A218ExamAzadeh Alimadad
Summer 2022204670015 M-W----1430-1620B155LectureAzadeh Alimadad
M------1830-2125B155ExamAzadeh Alimadad
Spring 20221105900112 M-W----1830-2020T530LectureAzadeh Alimadad
----F--1830-2125T530ExamAzadeh Alimadad
Fall 20213016900113 M-W----1630-1820B023LectureAzadeh Alimadad
--W----1830-2125B023ExamAzadeh Alimadad
Summer 202120571W018 -T-R---1630-1820WWWWWWAzadeh Alimadad
--W----1830-2125WWWExamAzadeh Alimadad
Fall 202031538W014 M-W----1830-2020WWWWWWAzadeh Alimadad
--W----1830-2125WWWExamAzadeh Alimadad
Summer 202021158W011 M-W----1830-2020WWWWWWAzadeh Alimadad
--W----1830-2125WWWExamAzadeh Alimadad
Fall 2019311640011 M-W----1630-1820A210LectureYew-Wei Lim
----F--1830-2125A272ExamYew-Wei Lim